FOUNDATION INVESTIGATION REPORT CONTRACT No. 2023-4010 REPORT No. 1

Ministry of Transportation

THURBER ENGINEERING LTD. Foundation Investigation Report

Fenelon Falls Maintenance Patrol Yard Kawartha Lakes, Ontario Agreement No. 4021-E-0018 G.W.P No. 4044-22-00

Latitude: 44.519924°, Longitude: -78.792568°

GEOCRES No. 31D-828

Client Name: Dillon Consulting Limited Date: June 28, 2024 File: 36708

TABLE OF CONTENTS

PART A: FACTUAL INFORMATION

1.	INTRO	RODUCTION1			
2.	SITE D	DESCRIPTION1			
3.	INVES	STIGATION PROCEDURES			
	3.1	2021 Investigation (GEOCRES No. 31D-775)	1		
	3.2	Current Investigation	2		
4.	SITE G	BEOLOGY AND SUBSURFACE CONDITIONS	5		
	4.1	Regional Geology	5		
	4.2	General Description of Subsurface Conditions	5		
	4.3	Fill	6		
	4.4	Silty Sand to Sandy Silt	6		
	4.5	Sandy Gravel Clayey Silt Till	7		
	4.6	Groundwater Conditions	8		
	4.7	Hydrogeological Testing	8		
		4.7.1 Guelph Permeameter Tests in the Stormwater Management Pond Area .	8		
		4.7.2 Percolation (T-time) Tests – Septic Field Area	9		
		4.7.3 Borehole Infiltration Tests – Dry monitoring wells	9		
	4.8	Analytical Laboratory Testing	9		
5.	MISCE	LLANEOUS	1		

STATEMENT OF LIMITATIONS AND CONDITIONS

IN-TEXT TABLES

Table 3.1: 2021 Foundation Investigation (by Others)	2
Table 3.2: 2023 Foundation Investigation	3
Table 4.1: Grain Size Distribution of Silty Sand to Silt and Sand Fill	6
Table 4.2: Grain Size Distribution of Silty Sand to Sandy Silt Deposit	7
Table 4.3: Atterberg Limits of Sandy Gravel Clayey Silt Till	7
Table 4.4: Measured Groundwater Levels in Monitoring Wells	8
Table 4.5: Results of Guelph Permeameter Tests	8
Table 4.6: Results of Corrosivity Tests	10

APPENDICES

APPENDIX A

- Record of Borehole Sheets (Golder)
- Geotechnical Laboratory Test Results (Golder)
- Certificate of Analysis Report Corrosivity Test Results (Golder)

APPENDIX B

- Borehole Locations and Soil Strata (Thurber)
- Record of Borehole Sheets (Thurber)
- Test Pit Logs (Thurber)
- Geotechnical Laboratory Test Results (Thurber)
- Certificate of Analysis Report Corrosivity Test Results (SGS for Thurber)
- Site Photographs (Thurber)

APPENDIX C

• Hydrogeological Test Results

PART A – FACTUAL INFORMATION

1. INTRODUCTION

This report presents the data obtained from a foundation investigation carried out by Thurber Engineering Ltd (Thurber) near the proposed maintenance patrol yard, west of Fenelon Falls, in Kawartha Lakes, Ontario.

The purpose of this investigation was to explore the subsurface conditions at the proposed maintenance patrol yard and, based on the data obtained, to provide a borehole location plan, record of borehole, laboratory test results, and a written description of the subsurface conditions.

Thurber carried out the investigation as a subconsultant to Dillon Consulting Limited (Dillon), under the Ministry of Transportation, Ontario (MTO) Assignment No. 4021-E-0018.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2. SITE DESCRIPTION

The proposed maintenance patrol yard is located on Glenarm Road approximately 800 m west of the intersection of Highway 35 and Glenarm Road in Kawartha Lakes, Ontario. The site and the surrounding area are agricultural lands, with an active sand and gravel pit on the southwest side of the intersection of Highway 35 and Glenarm Road.

The ground surface across the existing site is generally flat, varying between Elevation 270 m and Elevation 273 m from west to east.

3. INVESTIGATION PROCEDURES

3.1 2021 Investigation (GEOCRES No. 31D-775)

In April 2021, a foundation investigation was carried out by Golder Associates Ltd. (Golder), during which time a total of seven boreholes were advanced, designated Boreholes 21-1 to 21-5A, 21-5B, and 21-5C). the results of this investigation are contained in the report titled, "Foundation Investigation and Design Report, Highway 35 Patrol Yard, Kawartha Lakes, Ontario, MTO Assignment No. 4017-E-0023, G.W.P. 4071-19-00.', dated July 8, 2021 (GEOCRES No. 31D-775).

The location of boreholes, ground surface elevation, and depth of boreholes are summarized in Table 3.1. These boreholes are shown on Drawing 1 and the record of boreholes and figures for laboratory test results are presented in Appendix A.

Borehole	Northing (Latitude, °)	Easting (Longitude, °)	Ground Surface Elevation (m)	Depth of Borehole (m)
21-1	4,931,350.2 (44.519981)	360,989.0 (-78.793174)	271.2	9.8
21-2	4,931,324.6 (44.519748)	361,026.0 (-78.792711)	269.7	9.8
21-3	4,931,362.3 44.520084)	361,060.8 (-78.792270)	271.0	9.4
21-4	4,931,361.4 (44.520075)	361,089.6 (-78.791908)	271.0	9.3
21-5A	4,931,383.2 (44.520265)	361,154.4 (-78.791091)	272.5	3.8
21-5B	4,931,382.3 (44.520258)	3611,52.1 (-78.791119)	272.4	2.1
21-5C	4,931,381.4 (44.520250)	361,150.2 (-78.791143)	272.4	9.7

Table 3.1: 2021 Foundation Investigation (by Others)

3.2 Current Investigation

The foundation and hydrogeology investigation were carried out between May 30 and June 8, 2023, consisting of nine boreholes and one test pit.

The Record of Borehole and Test Pit sheets are included in Appendix B.

The borehole and test pit locations and elevations were surveyed using a Trimble R12 GPS Unit. In accordance with the requirements for surveying of foundation boreholes, the survey readings have a vertical and horizontal accuracy of 0.1 m and 0.5 m, respectively. The locations of the boreholes and test pit as presented on the record of boreholes and test pit, and as shown on Drawing 1 in Appendix B, are positioned relative to coordinate system MTM NAD 83, Zone 10. The geographic coordinates, ground surface elevations and depths of boreholes/test pit prior to termination is summarized in Table 3.2. Site photographs showing site features, borehole drilling and test-pitting are provided in Appendix B.

Borehole/Test Pit	MTM Northing (Latitude, °)	MTM Easting (Longitude, °)	Ground Surface Elevation (m)	Depth of Borehole/Test Pit (m)
FST-01	4,931,408.7 (44.520494)	361,060.5 (-78.792266)	263.8	8.2
MSB-01	4,931,324.2 (44.519738)	361,007.0 (-78.792948)	257.4	12.8
MSB-02	4,931,368.0 (44.520129)	361,029.4 (-78.792661)	258.5	12.8
SEP-01	4,931,332.1 (44.519799)	361,133.4 (-78.791357)	266.0	5.2
SWMP-01	4,931,286.4 (44.519396)	361,012.5 (-78.792883)	263.2	6.7
SWMP-02	4,931,303.1 (44.519542)	361,068.2 (-78.79218)	262.9	6.7
SWMP-03	4,931,253.9 (44.519101)	361,059.0 (-78.792301)	263.3	6.7
VMG-01	4,931,374.7 (44.520184)	361,101.4 (-78.791755)	258.4	12.8
VMG-02	4,931,406.6 (44.52047)	361,119.1 (-78.791529)	259.6	12.8
TP-01	4,931,294 (44.51946)	361,035 (-78.792598)	270.4	2.0

Table 3.2: 2023 Foundation Investigation

Boreholes were advanced using a track-mounted CME-75 drill rig, which was supplied and operated by Drilltech Drill Limited of Newmarket, Ontario, using 150 mm outside diameter solid stem augers. Soil samples were obtained at selected intervals using a split-spoon sampler driven by automatic hammers in general accordance with ASTM D1586 Standard Penetration Testing (SPT) procedures. The maximum particle size that can be sampled from the standard split-spoon hammer used in the investigation is limited to 35 mm and therefore, particles that may exist within the soils larger than this dimension would not be recovered or represented in the grain size analyses.

Monitoring wells were installed in Boreholes FST-01 and SWMP-02. Each well consists of a 32 mm inside diameter Schedule 40 PVC pipe with a 3 m long slotted screen, enclosed in a column of filtered sand to permit the monitoring of groundwater level and infiltration testing. The bottom of each well was sealed with a well cap. Well installation details, groundwater level readings are shown on the record of borehole sheets.

For boreholes without monitoring well installations, each borehole was abandoned in accordance with O.Reg. 903 (as amended) by means of backfilling with bentonite.

Infiltration testing was carried out in the monitoring wells installed in Boreholes FST-01 and SWMP-02, which were screened across a native sand to silt deposit. Both wells were dry at the time of the tests and therefore, distilled water was introduced into the wells. During the tests, both electronic measurements from the datalogger and manual measurements were recorded until the water level in the wells dropped to the well bottom. The electronic and manual measurements were then compared for quality control.

The test pitting was carried out using a B95 Backhoe Loader, which was supplied and operated by Young's Construction Limited of Fenelon Falls, Ontario. Guelph permeameter testing was carried out in hand augered boreholes through the bottom of the test pit excavated to depths of 0.5 m and 2.0 m below existing ground surface. Upon completion of the testing, the test pit was backfilled with the excavated native sands and silts.

Percolation (T-time) tests were carried out in the proposed septic field area near Borehole SEP-01. The tests were carried out in shallow holes that were approximately 15 cm in diameter and 20 cm in depth. The bottom and sides of the pits were scarified with a knife blade to remove any smeared soil surfaces and loose materials to provide a natural soil interface. Prior to performing the tests, the shallow holes were soaked for approximately 30 minutes with distilled water to the top of the hole and readjusted the water level as needed. After the soaking process, the holes were refilled with water to a depth of approximately 15 cm above the bottom. A meter stick was placed in each hole at a fixed reference point to record water level throughout the testing period. During the tests, the water level was readjusted to the initial height when needed.

The investigation was supervised by members of our technical staff, who located the boreholes and test pit, arranged for the clearance of underground services, observed the drilling, sampling, and in situ testing operations, logged the boreholes and test pit, and examined and cared for the soil samples. The samples identified in the field were placed in appropriate containers, labelled, and transported to our Pickering geotechnical laboratory where the samples underwent further visual examination and laboratory testing. All laboratory tests were carried out to MTO and/or ASTM standards, as appropriate.

4. SITE GEOLOGY AND SUBSURFACE CONDITIONS

4.1 Regional Geology

In general, the site is located within the physiographic region of Peterborough Drumlin Field as delineated in the Physiography of Southern Ontario (Chapman and Putnam, 1984). The Peterborough Drumlin Field extends from Hasting County Simcoe County and includes drumlins south of the moraine in Northumberland County. This region contains numerous drumlins and drumlinoid hills and is underlain by limestone bedrock of the Lindsay and Verulam Formations.

More specifically, the site is located within an esker containing stratified deposits of sands and gravel. This esker is oriented from the northeast to the southwest, which compasses the sand and gravel pit located just east of the site.

4.2 General Description of Subsurface Conditions

Details of the soil stratigraphy as encountered in the current investigation are presented on the Record of Borehole sheets included in Appendices A and B. A general description of the stratigraphy, based on the conditions encountered in the boreholes, is given in the following sections. However, the factual data presented on the Record of Borehole sheets takes precedence over this general description for interpretation of the site conditions. Soil classification is in accordance with ASTM D2487. Description of cohesive soils and secondary components are described as outlined in the MTO Guideline for Foundation Services Manual (April 2022).

The results of in-situ testing as presented in the record of boreholes and in this section are uncorrected. The boundaries between soil deposits on the record of boreholes have been inferred from non-continuous sampling, observation of the progress of drilling, and the results of Standard Penetration Testing. Therefore, the boundaries represent the transitions between soil deposits rather than exact planes of geological change. Variation on the stratigraphic boundaries between and beyond boreholes will exist and is to be expected.

In general, the subsurface conditions consist of a surficial layer of silty sand to silt and sand fill, which is in turn underlain by a native deposit of silty sand to sandy silt containing layers of sand and gravel to sand.

4.3 Fill

Fill consisting of silty sand to silt and sand (i.e., reworked native soils), was encountered at ground surface at all borehole locations. The depth of fill varies from 0.3 m to 2.2 m below ground surface (Elevations 272.1 m to 268.2 m) but in general, the depth of fill ranges between 1.4 m and 1.5 m below ground surface (Elevations 271.1 m to 268.2 m).

The SPT N-values measured within the fill ranged from 2 blows to 15 blows per 0.3 m of penetration, indicating a very loose to compact condition.

The moisture content of the silty sand to silt and sand fill ranged from 4 per cent to 21 per cent. The results of grain analysis carried out on samples of the fill are presented in Figure B-1 in Appendix A and Figure B-1 in Appendix B. The results of the tests are summarized in Table 4.1 and on the Record of Boreholes sheets in Appendices A and B.

Soil Particle	Percentage (%)
Gravel	0 to 2
Sand	40 to 79
Silt	20 to 57
Clay	0 to 8

Table 4.1: Grain Size Distribution of Silty Sand to Silt and Sand Fill

4.4 Silty Sand to Sandy Silt

A native deposit of silty sand to sandy silt containing trace to some gravel was encountered at all borehole locations, which extends to a depth of up to 12.8 m below ground surface (Elevation 257.4 m). Within the silty sand to sandy silt, an interlayer of sand and gravel to gravelly silty sand between 5.7 m and 9.8 m thick was encountered in Boreholes 21-5A to 21-5C, and VMG-02. Except for Borehole 21-1, all boreholes were terminated within this deposit.

The SPT N-values measured within the cohesionless deposit ranged from 2 blows per 0.3 m of penetration to 100 blows per 0.07 m of penetration, indicating a very loose to very dense condition.

The moisture content of the silty sand to sandy silt ranged from 1 per cent to 28 per cent. The results of grain analysis carried out on samples of the silty sand to sandy silt as well as interlayer

of sand, and sand and gravel to gravelly silty sand are presented in Figures B-2 and B-4 in Appendix A and Figures B-2 to B-5 in Appendix B.

The results of the tests are summarized in Table 4.2, and presented on the Record of Boreholes sheets in Appendices A and B.

Soil Particle	Silty Sand to Sandy Silt Percentage (%)	Sand Percentage (%)	Sand and Gravel to Gravelly Silty Sand Percentage (%)
Gravel	0 to 16	0 to 2	28 to 39
Sand	23 to 86	88 to 91	48 to 61
Silt	9 to 76	7 to 10	7 to 15
Clay	0 to 8	0 to 4	0 to 5

Table 4.2: Grain Size Distribution of Silty Sand to Sandy Silt Deposit

It should be noted that Atterberg limits tests were carried out on samples of the silty sand to sandy silt from Boreholes MSB-02, SWMP-03, VMG-01, but the results indicate that the material is non-plastic.

4.5 Sandy Gravel Clayey Silt Till

A 0.3 m thick till deposit consisting of sandy gravel clayey silt was encountered beneath the silty sand deposit in Borehole 21-2. Borehole 21-2 was terminated in this deposit.

The SPT N-value measured within the till deposit is 72 blows per 0.3 m of penetration, indicating a hard consistency.

The result of Atterberg limits tests carried out on the sample of the till deposit is presented on Figure B-5 in Appendix A and is summarized inTable 4.3.

Parameter	Value
Liquid Limit	15
Plastic Limit	10
Plasticity index	5

Table 4.3: Atterberg	Limits of Sandy	Gravel Clayey Silt Till
----------------------	-----------------	-------------------------

The results indicate that the material is a clayey silt of low plasticity (CL-ML).

4.6 Groundwater Conditions

Details of the water level observed in the monitoring wells installation as part of the current investigation are presented on the record of boreholes in Appendices A and B and summarized in Table 4.4.

Borehole	Date of Reading	Depth and Elevation of Groundwater (m)	Remarks
21-4	2021-04-28 2021-06-24	Dry at 9.3 / 261.7	
FST-01	2023-06-08	Dry at 8.2 / 263.8	Monitoring wells were dry.
VMS-02	2023-06-08	Dry at 6.7 / 262.9	

Table 4.4: Measured Groundwater Levels in Monitoring Wells

It should be noted that the groundwater level is subject to seasonal fluctuations and should be expected to be higher elevation after periods of significant or prolonged precipitation.

4.7 Hydrogeological Testing

4.7.1 Guelph Permeameter Tests in the Stormwater Management Pond Area

The Guelph Permeameter tests were carried out in hand augered boreholes advanced at the bottom of the test pit. At each depth interval, two 75 mm diameter boreholes were augered at approximately 1.5 m apart. In each test hole, two sets of readings were obtained using the combined reservoirs method. The two sets of readings were processed using the single head method. The average of the two single head test results were reported as the field saturated hydraulic conductivity (K_{fs}) at the subject test hole location.

The Guelph Permeameter calculation sheets are presented in Appendix C. A summary of the test results is presented in Table 4.5.

Test Depth	Test 1	Test 2	Average		
0.7 m ⁽¹⁾	1.2 x 10⁻⁵ m/s	3.0 x 10⁻ ⁶ m/s	7.7 x 10 ⁻⁶ m/s		
2.4 m ⁽²⁾	1.0 x 10 ⁻⁴ m/s	2.7 x 10 ⁻⁵ m/s	6.3 x 10 ⁻⁵ m/s		

Table 4.5: Results of Guelph Permeameter Tests

1. Test conducted in a 0.2 m deep borehole advanced through the base of a 0.5 m deep test pit.

2. Test conducted in a 0.4 m deep borehole advanced through the base of a 2 m deep test pit.

4.7.2 Percolation (T-time) Tests – Septic Field Area

Two percolation tests were carried out in two shallow holes approximately 1.5 m apart. Each test continued for approximately 70 to 75 minutes and during which time, water was introduced four times to near the top of the shallow holes. The time it took for the water level to drop by one centimeter (i.e., T-time) varied between 1.0 and 1.7 minutes for one test, and between 2.4 and 3.1 minutes for the other.

4.7.3 Borehole Infiltration Tests – Dry monitoring wells

Borehole infiltration tests were carried out in each dry monitoring well. The monitoring wells installed in Boreholes FST-01 and SWMP-02 were dry and as such, a total of 18 L and 24 L of distilled water was introduced into wells in Boreholes FST-01 and SWMP-02, respectively, for the purpose of the infiltration tests. Due to the high rate of infiltration, the highest recorded water level was approximately 0.8 m above the bottom in each well, which was observed to dropped to the bottom of the well in approximately 1.5 minutes. A water level-time plot for each test is included in Appendix C.

In addition, the data were also analyzed as a slug test using the Hvorslev method. Although the assumption that the surrounding soil is saturated is not valid as a result of the wells being dry, the results were in the order of 10⁻⁵ m/s, which are in general agreement with Guelph Permeameter results.

4.8 Analytical Laboratory Testing

Samples of the native silty sand to sandy silt was submitted for analytical testing for corrosivity analysis and sulphide content. The analytical test results for the soils are presented in Appendices A and B and summarized in Table 4.6.

Borehole / Sample	Depth / Elevation (m)	Resistivity (ohm-cm)	Electrical Conductivity (µS/cm)	Soluble Sulphate Content (μg/g)	Chloride Content (µg/g)	рН
21-2 SS2	1.1 / 268.8	11,000	88	<20	<20	7.9
21-3 SS4	2.6 / 268.4	13,000	76	<20	<20	7.8
21-5C SS4	2.6 / 269.8	7,200	138	<20	<20	5.8
VMG-02 SS3	1.9 / 270.5	20,800	48	< 0.4	1.1	8.82
MSB-02 SS2	1.0 / 270.3	83,300	12	< 0.4	0.6	7.87

Table 4.6: Results of Corrosivity Tests

5. MISCELLANEOUS

The foundation and hydrogeology investigation were supervised on a full-time basis by Vihang Patel, EIT, and Klayton Irvine, EIT, respectively. The Foundation Investigation Report was prepared by Ms. Yidan (Eda) Cui, P.Eng., and Messrs. Ali Rajaei, P. Eng. and Christopher Ng, P.Eng. The report was reviewed by Messrs. and David Hill, P.Geo., P.Eng., Senior Hydrogeological Engineer, and Jason Lee, P.Eng., a Designated Principal Contact for MTO Foundations Projects.

the Rugui

Ali Rajaei, P.Eng., Geotechnical Engineer

Christopher Ng, P.Eng., Associate, Senior Geotechnical Engineer

Jason Lee, P.Eng., Partner, Senior Geotechnical Engineer Designated MTO Contact

Client: Dillon Consulting Limited File No.: 36708 Date: *June 28, 2024* File: 36708

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

APPENDIX A

- Record of Borehole Sheets (Golder)
 Geotechnical Laboratory Test Results (Golder)
 Certificate of Analysis Report Corrosivity Test Results (Golder)

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS MINISTRY OF TRANSPORTATION, ONTARIO

	PARTICLE SIZES OF CONSTITUENTS						
	Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)			
	BOULDERS	Not Applicable	>200	>8			
	COBBLES	Not Applicable	75 to 200	3 to 8			
	GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75			
	SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)			
	FINES	Classified by plasticity	<0.075	< (200)			

MODIFIERS FOR SECONDARY COMPONENTS^{1,2}

Percentage by Mass	Modifier
> 35	Use 'and' to combine primary and secondary component (<i>i.e.</i> , SAND and gravel)
> 20 to 35	Primary soil name prefixed with "gravelly, sandy" as applicable
> 10 to 20	some (<i>i.e.,</i> some sand)
≤ 10	trace (<i>i.e.</i> , trace fines)

1. Only applicable to components not described by Primary Group Name.

 Classification of Primary Group Name based on Unified Soil Classification System (ASTM D2487) for coarse-grained soils; fine-grained soils described per current MTO Soil Classification System.

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q₁), porewater pressure (u) and sleeve friction (f_s) are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

COARSE-	GRAINED SOILS
Com	ipactness ¹
Term	SPT 'N' (blows/0.3m) ²
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	> 50

1. Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

 SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC / SC	Rock core / Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston - note size (Shelby tube)
WS	Wash sample
OD / ID	Outer Diameter / Inner Diameter
HSA / SSA	Hollow-Stem Augers / Solid-Stem Augers
SOIL TESTS	
w	water content
PL, w _p	plastic limit
LL, w∟	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis

	FINE-GRAINED SOIL	S
	Consistency	
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	< 12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	> 200	> 30

Modified Proctor compaction test

Standard Proctor compaction test

unconfined compression test

concentration of water-soluble sulphates

unconsolidated undrained triaxial test

field vane (LV-laboratory vane test)

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

organic content test

unit weight

 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

 SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

	Field Moisture Condition
Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

MPC

SPC

OC

SO₄

UC

UU

γ

1.

V(FV)

PRO	JECT			RE	COR	D OF	BOF	REHO	DLE	No	21-1		SHE	ET	1 OF	1		MET	RIC	
G.W	P. 4071-19-00	LOC	ATIC	N _N	49313	350.2; E 3	360989.0	MTM	NAD ZO	ONE (L	AT. 44.	.519981	; LONG	678.7	93174)		ORIG	INATED I	BY <u>sc</u>	
DIST	Eastern HWY 35	BOR	REHO	LE TY	PE	Power Au	uger; 100) mm ().	.D. Soli	d Stem	Augers						COM	PILED BY	MB	
DAT	UM <u>HT_2 (Goedetic)</u>	DAT	E _			April 29, 2	2021										CHEC	KED BY	AM	P
	SOIL PROFILE	PLOT	ER	SAMPL	ES	D WATER ITIONS	DN SCALE	DYNAI RESIS 2		NE PE PLOT		TION 0 10	00	PLASTI L I MIT W _P	C NATU MOIS CON	JRAL TURE TENT V	LIQUID LIMIT W _L	UNIT WEIGHT	REM GRAII	ARKS & N SIZE
DEPTH	DESCRIPTION GROUND SURFACE	STRAT	NUME	дүт	"N" VAL	GROUN COND	ELEVATI	0 UN 9 QI 2	NCONF JICK TI 10 4	INED RIAXIAI 0 6	+ _ × 0 8	FIELD	VANE JLDED)0	WA1	ER CC	DNTEN 0 3	— ⊤ (%) Ю	ץ kN/m³	DISTRI (⁴ GR SA	BUTION 6) SI CL
0.0 270.7 0.5	SILTY SAND (SM), trace rootlets and organics (FILL) Very loose Dark brown Moist		1A 1B	SS	3		271													
	SILTY SAND (SM) Very loose to very dense Brown, oxidation staining to a depth of 2.2 m		2	SS	4	-	270							c						
	Moist		3	SS	7	-	269												0 82	13 5
			4	SS	4		268							0						
			5	SS SS	20		067							o						
			7	ss	30		207							-						
1 10/2 1							266													
			8	SS	22		265							0					0 74	21 5
GPJ GAL-							264													
			9	SS	40		263													
							262													
261.5	;		10	SS	86									0						
61A-MIC 0001 S://LEIENI SUMI CUTTWY_33_PAI IXUL_TAKUUK_ UAI ANDIN 55-55 36 5-12	END OF BOREHOLE NOTE: 1. Borehole open and dry upon completion of drilling.	<u>(49</u> °)																		

PROJE	CT 1786659 (13000)			RE	COR	D OF	BOF	REHO	DLE	No	21-2	2	SHE	ET	1 OF	1		MET	RIC	
G.W.P	4071-19-00	LOC	ATIC	DN <u>1</u>	N 49313	324.6; E 3	61026.0	MTM	NAD Z	ONE (L	AT. 44.	519748	; LONG	678.7	92711)		ORIG	INATED I	BY <u>sc</u>	
DIST_	Eastern HWY <u>35</u>	BOF	REHC	DLE TY	PE	Power Au	iger; 100	mm O.	.D. Soli	d Stem	Augers						COM	PILED BY	́МВ	
DATU	I _HT_2 (Goedetic)	DAT	Έ		,	April 28, 2	2021										CHEC	KED BY	AM	-
	SOIL PROFILE		s	SAMPL	ES	R R	ALE	DYNAI RESIS	MIC CC TANCE	NE PE PLOT		TION				JRAL		μ	REM	ARKS
ELEV DEPTH		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATI CONDITIONS	ELEVATION SC/	2 SHEA O UN O QU 2	0 4 R STF NCONF JICK TI 0 4	0 6 RENGT INED RIAXIAI 0 6	0 8 "H kPa + - × 0 8	0 10 FIELD REMO	00 VANE JLDED 00	UMIT WP WAT	ER CC	TURE TENT V D DNTEN	LIMIT WL T (%)		ہ GRAIN DISTRII (؟ GR SA	k N SIZE BUTION 6) SI CL
0.0	SILTY SAND (SM), trace rootlets and organics (FILL)		1A	ss	3										0					
0.5	Very loose Dark brown Moist SAND (SP-SM), trace silt, trace day		1B 2	SS	4		269													
	Very loose to dense Brown, oxidation staining to a depth of 3.0 m Moist		3	SS	8		268													
			4	SS	21		267													
			5	SS	23									0						
			6	SS	21		266												0 89	74
			7	SS	34		265							0						
264.1 5.6	SILTY SAND (SM), some gravel Dense to very dense						264													
GTA.GDT	Brown Moist		8	SS	43		263												16 68	12 4
GPJ GAL																				
<u> </u>			9	SS	71		262							o						
Y_35_PATF	- Auger grinding from a depth of 8.5 m to 8.8 m						261													
AHL 260.2	Sandy gravelly CLAYEY		10A 10B	SS	72		260													
BTA-MTO 001 S:\CLIENTS\MTO\HWY_35_PATROL_YARD\02_DATAIG	SILI-SILI (CL-ML) (TILL) Hard Brown Moist END OF BOREHOLE NOTE: 1. Borehole open and dry upon completion of drilling.																			

PROJEC	CT 1786659 (13000)	_		RE	COR	D OF	BOF	REHO	DLE	No	21-3	3	SHE	EET	1 OF	1		ME	RIC)	
G.W.P <u>.</u>	4071-19-00	_ LOC	ATIC	N _I	N 49313	62.3; E 3	61060.8	MTM I	NAD Z	ONE (L	AT. 44	.520084	4; LONC	678.7	92270)		ORIG	INATED	BY <u>s</u>	С	
DIST_	Eastern HWY <u>35</u>	_ BOR	EHO	LE TY	'PEI	Power Au	iger; 100) mm O	.D. Soli	d Stem	Augers						COM	PILED BY	′_ <u></u> №	1B	
DATUM	HT_2 (Goedetic)	_ DAT	E _			April 28, 2	2021										CHEC	CKED BY	A	MP	
	SOIL PROFILE	ц	S	ampl	.ES σ	ATER	SCALE	DYNAI RESIS 2	MIC CC TANCE	DNE PE E PLOT		ATION 	00	PLASTI L I MIT	IC NATI MOIS CON	URAL TURE TENT	LIQUID LIMIT	NIT IGHT	RE	MARI &	≺s
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLC	NUMBER	ТҮРЕ	"N" VALUE	GROUND M CONDITIC	ELEVATION	SHEA OUN OQU	L R STF NCONF JICK T		L H kPa	FIELD		w _P ⊢ ₩A٦			w _L I T (%)	רש דע דע געע גע	GR/ DISTI	AIN S RIBU ⁻ (%)	IZE FION
271.0 0.0	GROUND SURFACE SILTY SAND (SM), trace rootlets and organics to a depth of 0.4 m (FILL)		1A 1B	SS	3		ш		0 4						0 2	.0 .	30	kN/m [°]	GR S	A S	CL
	Dark brown Moist to wet		2	SS	7		270												24	9 4 ⁻	18
268.8			3	SS	4		269									0					
2.2	SAND (SP-SM) to SILTY SAND (SM) Compact to dense Brown		4	SS	12																
	Moist		5	SS	15		268												08	87	5
			6	SS	24		267							0							
			7	SS	15		266														
							265														
			8	SS	37		264							c							
7.2	Gravelly SILTY SAND (SM) Very dense Brown Moist					_	204														
	Nost		9	SS	100/0.1	5	263												28 5	2 15	; 5
261.6			10	SS	100/0.0	7	262							0							
9.4	END OF BOREHOLE NOTE: 1. Borehole open and dry upon completion of drilling.																				

O^{3%} STRAIN AT FAILURE

PROJE	CT 1786659 (13000)	_		RE	COR	DOF	BOF	REHO	DLE	No	21-4	ŀ	SHE	EET	1 OF	1		MET	RIC	;
G.W.P.	4071-19-00	_ LOC	ATIC	N _1	N 49313	61.4; E 3	361089.6	MTM I	NAD ZO	ONE (L	AT. 44	.52007	5; LONG	G78.7	91908)		ORIG	INATED I	BY <u>so</u>	;
DIST_	Eastern HWY <u>35</u>	_ BOR	EHO	LE TY	PE	Power Au	uger; 200) mm O	.D. Holl	ow Ster	m Auge	rs						PILED BY	M	3
DATUM	HT_2 (Goedetic)	_ DAT	E		/	April 28, 2	2021											KED BY	AM	/IP
ELEV DEPTH	SOIL PROFILE	RAT PLOT		SAMPL Ithe	L. VALUES	COUND WATER	VATION SCALE	DYNAI RESIS 2 SHEA 0 Uf		NE PE PLOT 0 6 RENGT	NETRA	TION	00 VANE					Å UNIT WEIGHT	REN GRA DISTR	IARKS & IN SIZE IBUTION (%)
271.0	GROUND SURFACE	ST			7	В В В	ELE	9 Qi 2	20 4		L X 60 8	КЕМО 60 1 		1	0 2	:0 :	30	kN/m ³	GR SA	SI CL
	Loose Brown Moist		1	SS	5										o					
269.6	SILT (ML) and sand		2	SS	6		270													
268.8	Loose Brown Moist SAND (SW-SM) trace silt trace		3	SS	4		269								0				0 47	50 3
	gravel Compact Brown Dry		4	SS	19		268												2 88	82
			5	SS	30									0						
			6	SS	15		267													
			7	SS	24		266							0						
5						anan Marin	265													
			8	SS	29															
5							264													
			9	SS	30		263							0						
262.5 8.5	Gravelly SILTY SAND (SM) Very dense Brown						262													
261.7 9.3	Moist END OF BOREHOLE NOTE:	2.40	10	SS	50/0.15															
	 Water not encountered during drilling. Monitoring well dry upon completion of drilling. 																			

PROJE	CT 1786659 (13000)	_		REC	ORI) of	BOR	EHO	LE	No 2	21-5/	4	SHE	ET	1 OF	1		MET	RIC
G.W.P <u>.</u>	4071-19-00		ATIC	DN <u>N</u>	1 49313	83.2; E 3	361154.4	мтм і	NAD ZO	ONE (L	AT. 44.	.520265	5; LONG	678.7	91091)		ORIG	INATED I	BY <u>sc</u>
DIST_	Eastern HWY 35	BOR	EHC	LE TY	PEF	Power Au	ıger; 100	mm O	.D. Soli	d Stem	Augers						COM	PILED BY	MB
DATUM	HT_2 (Goedetic)	DAT	E _		ŀ	April 29, 2	2021										CHEC	KED BY	AMP
	SOIL PROFILE		5	SAMPL	ES	TER VS	CALE	DYNAI RESIS	MIC CC TANCE	NE PE PLOT				PLASTI		JRAL TURE		т НТ	REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	RAT PLOT	NUMBER	ТҮРЕ	J" VALUES	ROUND WA	EVATION Se	2 SHEA O UN	0 4 R STF	0 6 RENGT INED	0 8 TH kPa +	FIELD			CON V CON		w _L →	NN Meið	∝ GRAIN SIZE DISTRIBUTION (%)
272.5	GROUND SURFACE	ST	-		4	9	ELE	9 Q(0 4		- X 0 8	REMO 0 10		1	0 2	0 3	30	kN/m ³	GR SA SI CL
0.0	Gravelly SILTY SAND (SM) (FILL) Loose Dark brown		1	SS	4		272							0					
271.8 0.7	Moist Gravelly SILTY SAND (SM) Dense to very dense Brown		2	SS	33		212												31 52 14 3
	Moist -Auger grinding below a depth of 0.8 m						271												
			3	55	67									0					
			4	SS	53		270												
			5	SS	95		269							0					
268.7 3.8	END OF BOREHOLE	-14																	
	NOTE:																		
	 Borehole terminated due to caving. A separate borehole (Borehole 21-5B) was advanced using hollow-stem augers, adjacent to Borehole 21-5A. See Record of Borehole 21-5B. 																		
1																			
1																			

GTA-MTO 001 S'ICLIENTSIMTO'HWY 35 PATROL_YARD'02 DATAIGINTIHWY 35 PATROL_YARD.GPJ GAL-GTA.GDT 6/16/21

PROJE	CT 1786659 (13000)			REC	ORI) of	BOR	EHO	LE	No	21-5	В	SHE	ET	1 OF	1		MET	RIC
G.W.P.	4071-19-00		ATIC	DN _M	V 49313	82.3; E 3	361152.1	MTM	NAD ZO	ONE (L	AT. 44.	.520258	; LONG	678.7	91119)		ORIG	INATED E	BY sc
DIST_	Eastern HWY <u>35</u>	_ BOR	EHO	LE TY	PE _I	Power Au	uger; 200	mm O.	.D. Ho l	ow Ster	n Augei	rs					COM	PILED BY	MB
DATUM	HT_2 (Goedetic)	DAT	E _		ļ	April 29, 2	2021										CHEC	KED BY	AMP
	SOIL PROFILE				FS	~	ш	DYNA			NETRA	TION							
		Γ⊢				ATER	SCAL	RESIS 2	1 ANCE	0 6	\geq		00	PLASTI LIMIT	C NATU MOIS	JRAL TURE	liquid Limit	ulT GHT	REMARKS &
FLEV		PLO.	BER	щ	LUES		NO	SHEA	R STF	RENGT	TH kPa	1		W _P	V	V	WL	UN	GRAIN SIZE
DEPTH	DESCRIPTION	IRAT	NUM	Σ	۲. 	SOUN	EVAT				+	FIELD		WAT	ER CC		Т (%)	γ	(%)
272.4	GROUND SURFACE	ν' ν			f	5	ELE	2	0 4		0 8	10 10)0	1	0 2	03	0	kN/m ³	GR SA SI CL
0.0	Stratigraphy inferred from Borehole 21-5A						070												
271.7							272												
0.7																			
	 Auger grinding, difficult drilling below a depth of 1.2 m 						271												
270.3	AUGER REFUSAI																		
	END OF BOREHOLE																		
	NOTE:																		
	1. Borehole terminated due to auger refusal. A third borehole																		
	attempt was made adjacent to Borehole 21-5B, see Record of Borehole 21 5C																		
	Dolehole 21-30.																		

PRC	JECT <u>1786659 (13000)</u>			REC	ORI) of	BOR	EHO	LE	No 2	21-50	C	SHE	ET	1 OF	1		MET	RIC	2	
G.W	.P <u>4071-19-00</u>	LOC	ATIC	<u>1</u> NC	N 49313	81.4; E 3	61150.2	MTM	NAD ZO	ONE (L	AT. 44.	520250	; LONG	678.7	91143)		ORIG	INATED I	BY _ <u>s</u>	SC	
DIST	Eastern HWY <u>35</u>	BOF	REHC	LE TY	'PEI	Power Au	ger; 200	mm O.	.D. Hollo	ow Ster	n Auger	s					COM	PILED BY	′ <u> </u>	ИB	
DAT	UM _HT_2 (Goedetic)	DAT	E _		1	April 30, 2	2021										CHEC	KED BY	A	MP	
	SOIL PROFILE		s	SAMPL	.ES	R.	ALE	DYNAI RESIS	MIC CC TANCE	NE PE PLOT		TION				JRAL		н	RE	MAR	кs
<u>ELEV</u> DEPTH		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	ELEVATION SCA	2 SHEA O UN O QU	0 4 R STF NCONF JICK TF	0 6 RENGT INED RIAXIAI	0 8 TH kPa +	0 10 FIELD REMO						WEIGH	GR/ DIST	& AIN S RIBU (%)	IZE TION
272.4	4 GROUND SURFACE SILTY SAND (SM), trace organics		10				ш	2	0 4	0 6	0 8			1		0 3		kN/m°	GR S	SA S	I CL
0.3	(HILL) Loose Dark brown Moist		1A 1B	SS	4		272														
271.0	SILTY SAND (SM) Loose Brown, oxidation staining Moist		2	SS	6		271														
1.3	SILTY SAND (SM) and gravel to gravelly SILTY SAND (SM) Dense to very dense		3	SS	39														34 5	50 1·	42
	Auger grinding below a depth of		4	SS	39		270							0							
	1.5 m.		5	SS	56		269														
			6	SS	65		269							0					36 4	l8 1	33
			7	SS	102/0.2	0	200														
1 10/2 1							267														
1 A.GUI 0			8	SS	28		266							0							
265.2 7.2	2 2 SILTY SAND (SM), trace gravel						005														
	Very dense Brown Moist		9	SS	54		200												35	56 3	92
	-Auger grinding below a depth of 7.2 m.						264														
			10	SS	54		263														
262.	7 END OF BOREHOLE		$\left \right $																		
	NOTE: 1. Borehole open and dry upon completion of drilling.																				

O^{3%} STRAIN AT FAILURE

Your Project #: 1786659 Site Location: HWY35 Your C.O.C. #: 136465

Attention: Michael Bentley

Golder Associates Ltd 100 Scotia Crt Whitby, ON CANADA L1N 8Y6

> Report Date: 2021/05/12 Report #: R6630743 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1C2198 Received: 2021/05/06, 14:30

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (20:1 extract)	3	2021/05/10	2021/05/11	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	2021/05/11	2021/05/11	CAM SOP-00414	OMOE E3530 v1 m
pH CaCl2 EXTRACT	3	2021/05/10	2021/05/10	CAM SOP-00413	EPA 9045 D m
Resistivity of Soil	3	2021/05/07	2021/05/11	CAM SOP-00414	SM 23 2510 m
Sulphate (20:1 Extract)	3	2021/05/10	2021/05/11	CAM SOP-00464	EPA 375.4 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 7 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1786659 Site Location: HWY35 Your C.O.C. #: 136465

Attention: Michael Bentley

Golder Associates Ltd 100 Scotia Crt Whitby, ON CANADA L1N 8Y6

> Report Date: 2021/05/12 Report #: R6630743 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1C2198 Received: 2021/05/06, 14:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: emese.gitej@bureauveritas.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 7 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

SOIL CORROSIVITY PACKAGE (SOIL)

BV Labs ID		PMT538	PMT539	PMT540		
Sampling Date		2021/04/30 17:00	2021/04/28 17:00	2021/04/28 17:00		
COC Number		136465	136465	136465		
	UNITS	21-5C SA2	21-2 SA4	21-3 SA4	RDL	QC Batch
Calculated Parameters						
Resistivity	ohm-cm	7200	11000	13000		7340563
Inorganics						
Soluble (20:1) Chloride (Cl-)	ug/g	<20	<20	<20	20	7342952
Conductivity	umho/cm	138	88	76	2	7345096
Available (CaCl2) pH	pН	7.54	7.87	7.76		7342579
Soluble (20:1) Sulphate (SO4)	ug/g	<20	<20	<20	20	7342958
RDL = Reportable Detection Limit						
de baten - Quanty control baten						

Page 3 of 7 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	PMT538
Sample ID:	21-5C SA2
Matrix:	Soil

Collected:	2021/04/30
Received:	2021/05/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride (20:1 extract)	KONE/EC	7342952	2021/05/10	2021/05/11	Deonarine Ramnarine
Conductivity	AT	7345096	2021/05/11	2021/05/11	Khushbu Vijay kumar Patel
pH CaCl2 EXTRACT	AT	7342579	2021/05/10	2021/05/10	Neil Dassanayake
Resistivity of Soil		7340563	2021/05/11	2021/05/11	Automated Statchk
Sulphate (20:1 Extract)	KONE/EC	7342958	2021/05/10	2021/05/11	Deonarine Ramnarine

BV Labs ID: PMT539 Sample ID: 21-2 SA4 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride (20:1 extract)	KONE/EC	7342952	2021/05/10	2021/05/11	Deonarine Ramnarine
Conductivity	AT	7345096	2021/05/11	2021/05/11	Khushbu Vijay kumar Patel
pH CaCl2 EXTRACT	AT	7342579	2021/05/10	2021/05/10	Neil Dassanayake
Resistivity of Soil		7340563	2021/05/11	2021/05/11	Automated Statchk
Sulphate (20:1 Extract)	KONE/EC	7342958	2021/05/10	2021/05/11	Deonarine Ramnarine

BV Labs ID: PMT540 Sample ID: 21-3 SA4 Matrix: Soil

Collected: 2021/04/28 Shipped: **Received:** 2021/05/06

Collected: 2021/04/28

Received: 2021/05/06

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride (20:1 extract)	KONE/EC	7342952	2021/05/10	2021/05/11	Deonarine Ramnarine
Conductivity	AT	7345096	2021/05/11	2021/05/11	Khushbu Vijay kumar Patel
pH CaCl2 EXTRACT	AT	7342579	2021/05/10	2021/05/10	Neil Dassanayake
Resistivity of Soil		7340563	2021/05/11	2021/05/11	Automated Statchk
Sulphate (20:1 Extract)	KONE/EC	7342958	2021/05/10	2021/05/11	Deonarine Ramnarine

Page 4 of 7 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.3°C

Results relate only to the items tested.

Page 5 of 7 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7342579	NYS	Spiked Blank	Available (CaCl2) pH	2021/05/10		99	%	97 - 103
7342579	NYS	RPD	Available (CaCl2) pH	2021/05/10	0.099		%	N/A
7342952	DRM	Matrix Spike	Soluble (20:1) Chloride (Cl-)	2021/05/11		NC	%	70 - 130
7342952	DRM	Spiked Blank	Soluble (20:1) Chloride (Cl-)	2021/05/11		107	%	70 - 130
7342952	DRM	Method Blank	Soluble (20:1) Chloride (Cl-)	2021/05/11	<20		ug/g	
7342952	DRM	RPD	Soluble (20:1) Chloride (Cl-)	2021/05/11	6.9		%	35
7342958	DRM	Matrix Spike	Soluble (20:1) Sulphate (SO4)	2021/05/11		132 (1)	%	70 - 130
7342958	DRM	Spiked Blank	Soluble (20:1) Sulphate (SO4)	2021/05/11		107	%	70 - 130
7342958	DRM	Method Blank	Soluble (20:1) Sulphate (SO4)	2021/05/11	<20		ug/g	
7342958	DRM	RPD	Soluble (20:1) Sulphate (SO4)	2021/05/11	NC		%	35
7345096	КНР	Spiked Blank	Conductivity	2021/05/11		101	%	90 - 110
7345096	КНР	Method Blank	Conductivity	2021/05/11	<2		umho/cm	
7345096	KHP	RPD	Conductivity	2021/05/11	1.6		%	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

FIGURE B-1

SAND (SP-SM/SW-SM)

FIGURE B-2

LEGEND

SYMBOL	BOREHOLE	SAMPLE	ELEVATION(m)	
•	21-4	4	268.4	
	21-2	6	265.6	

Checked By: _AMP_

Golder Associates

SILTY SAND (SM) to SILT (ML) and sand

FIGURE B-3

LEGEND

SYMBOL	BOREHOLE	SAMPLE	ELEVATION(m)	
•	21-4	3	269.2	
-	21-1	3	269.4	
•	21-3	5	267.6	
▲	21-1	8	264.8	
\bigtriangledown	21-5C	9	264.5	

Project Number: 1786659 (13 000)

Checked By: _AMP_

Golder Associates

LEGEND

SYMBOL	BOREHOLE	SAMPLE	ELEVATION(m)	
•	21-3	2	269.2	
	21-5C	3	270.6	
•	21-5C	6	268.3	
	21-2	8	263.3	
\bigtriangledown	21-3	9	263.1	
LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ASTM D4318)

APPENDIX B

- Borehole Locations and Soil Strata (Thurber)
- Record of Borehole Sheets (Thurber)
- Test Pit Logs (Thurber)
- Geotechnical Laboratory Test Results (Thurber)
- Certificate of Analysis Report Corrosivity Test Results (SGS for Thurber)
- Site Photographs (Thurber)

SITE TRINCON TRUCCION T	Cameron Late Foneton Falls SITE TENTEON STURGEON TENTEON CONVERS CON	HURBER ENGINEERING LTD. Image: Comparison Lake Image: Comparison L	FILIRBER ENCINEERING LTD. Image: Comparison Lake Image: Comparison	BOREHOLE LOCATIONS AND SOIL STRATA	N CONE PH	Test Pit Blows /0.3 Blows /0.3 Pressure, H	m (Std Pen Tes m (60° Cone, 4' ydraulic	t, 475J/blow) 75J/blow)
SITE TINELON POWLES CONTESS	Cameron Late Foneton Falls SITE TRINETON CONVELSS C	HURBER ENGINEERING LTD. Image: Comparison Lake Image: Comparison L	FILIRBER ENCINEERING LTD. FILIRBER ENCINEERING LTD. STER Cameron Lake STER STER THURBER ENCINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA	N CONE PH ₽	Flest Pit Blows /0.3 Blows /0.3 Pressure, H Water Level	n (Std Pen Tes m (60° Cone, 4 ydraulic Upon Completic	t, 475J/blow) 75J/blow) on of Drilling
SITE THREAD ZION EXISTE TREAD POWLES CONTERS C	Cameron Lake ISAACE GLEN Foneton Falls SITE TENELON STURCEON POWLISS CORVERS END Hunder Convolute 2 HILD Header KEYPLAN L E G E N D	HURBER ENGINEERING LTD.	THURBER ENGINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA	N CONE PH	Borehole Test Pit Blows /0.3 Blows /0.3 Pressure, H	m (Std Pen Tes m (60° Cone, 4 ydraulic	t, 475J/blow) 75J/blow)
	ZION PAGAVONG Cameron Lake ISAACS GLN Feneton Falls SITE TENELON STURGEON ZION POWLISS CORNESS CORNESS	THURBER ENGINEERING LTD.	THURBER ENGINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA	• •	KE L E Borehole Test Pit	YPLAN gen	D
SITE TRUCON STURGEON	SITE TENELON STURGEON	THURBER ENGINEERING LTD.	THURBER ENGINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA		ZION	e 1013 Microsoft Consume	iou e 103 Tanifem
	CAMP RAGAWONG Cameron Lake ISAACS GLEN Fencion Falls SITE TENELON S rungeon	THURBER ENGINEERING LTD.	THURBER ENGINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA	~		55 (Bas	
DAACS OLEM PEREPARA	CAINP, KAGAWONG Cameron Lake	THURBER ENGINEERING LTD.	THURBER ENGINEERING LTD.	BOREHOLE LOCATIONS AND SOIL STRATA	2	SITE	TENELON	sturgeon

METRIC				
WEIRIC	CONT	No		
AND/OR MILLIMETRES	S GWP N	Vo 4044	-22-00	
ESS OTHERWISE SHOWN	HIGHW	AY 35 MAI PATROL Y	NTENANCE ARD	SHEET
	BOREHOL	E LOCATIONS AN	ID SOIL STRATA	
	THURBER	ENGINEERING	LTD.	
	Chur KA		Cameron Lake	Foncion Falls s rURGEON
			EGENI	D
	+	Borehole		
	₽	Test Pit		
	CONE	Blows /0.3 Blows /0.3	m (Sta Pen Test m (60° Cone, 47	75J/blow)
	PH	Pressure, H	lydraulic	
	¥	Water Level	l in Monitoring W	/ell/Piezometer
	90%	Monitoring Rock Qualit	Well/Piezometer y Designation (R	Screen QD)
	A/R	Auger Refu	sal	,
	NO	ELEVATION	NORTHING	EASTING
	21-1	269.7	4 931 324.6	361 026.0
	21-3 21-4	271.0 271.0	4 931 362.3 4 931 361.4	361 060.8 361 089.6
	21-5A 21-5B	272.5 272.4	4 931 383.2 4 931 382 3	361 154.4
	21-50	272.4	4 931 381.4	361 150.2
	MSB-01	272.0	<u>4 931 408./</u> <u>4 931 324.3</u>	361 060.5 361 007.0
	MSB-02	271.0	4 931 368.0	361 029.4
	SWMP-01	269.9	4 931 332.1	361 012.5
	SWMP-02	269.6	4 931 303.1	361 068.2
	5WMP-03 TP-01	270.0	4 931 253.9 4 931 294.0	361 059.0
	VMG-01	271.2	4 931 374.7	361 101.4
	VMG-02	272.4	4 931 406.6	0.911 19.0
			240.000	
strata have been		163 NO.	३।⊓- ō∠ŏ	
e assumed from				
ce information only.				
are tor conceptual	TE BY		DESCRIPTION	
AD 83 Zone 10. DESIGN	MC CHK CN	SITE	ILOAD I STRUCT DWG 2	JATE SEP 2023

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

1. <u>TEXTURAL CLASSIFICATION OF SOILS</u>

2.

3.

4.

5.

(1)

(2)

CLASSIFICATION Boulders Cobbles	PARTICLE SIZE Greater than 200mm 75 to 200mm	VISUAL IDENTIFICATION same same
Gravel	4.75 to 75mm	5 to 75mm
Sand	0.075 to 4.75mm	Not visible particles to 5mm
Silt	0.002 to 0.075mm	Non-plastic particles, not visible to the naked eye
Clay	Less than 0.002mm	Plastic particles, not visible to the naked eye
<u>COARSE GRAIN SOIL D</u>	ESCRIPTION (50% greater than 0.07	(<u>5mm)</u>
TERMINOLOGY		PROPORTION
Irace or Occasional		Less than 10%
Some)	10 to 20%
Adjective (e.g. silty of sand	ly)	20 10 35%
And (e.g. sand and gravel)		35 to 50%
<u>[ERMS DESCRIBING CO</u>	NSISTENCY (COHESIVE SOILS O	NLY)
DESCRIPTIVE TERM	UNDRAINED SHEAR	APPROXIMATE SPT ⁽¹⁾ 'N'
	SIRENGIH (KPa)	VALUE
Very Soft	12 or less	Less than 2
Solt	12 to 25	2 10 4
F1FIII S+:ff	25 to 50 50 to 100	4 to 8 8 to 15
Sull Mama Stiff	50 to 100	8 10 15
Very Sull	100 to 200	15 to 30 Creater than 20
	5) La 4) SI 5) Pe	PT value pocket Penetrometer
TERMS DESCRIBING DI	ENSITY (COHESIONLESS SOILS C	<u>NLY)</u>
DESCRIPTIVE TERM	SPT "N" VALUE	
Very Loose	Less than 4	
Loose	4 to 10	
Compact	10 to 30	
Dense	30 to 50	
Very Dense	Greater than 50	
LEGEND FOR RECORDS	OF BOREHOLES	
SYMBOLS AND	SS Split Spoon Sample WS	Wash Sample AS Auger (Grab) Sample
ABBREVIATIONS	TW Thin Wall Shelby Tube Samp	le TP Thin Wall Piston Sample
FOR	PH Sampler Advanced by Hydrau	Ilic Pressure PM Sampler Advanced by Manual Pressur
SAMPLE TYPE	WH Sampler Advanced by Self St	tatic Weight RC Rock Core SC Soil Core
Sensitivity -	Undisturbed Shear Strength	
Sensitivity =	Remoulded Shear Strength	
Water Level C _{nen} Shear Strength D	etermination by Pocket Penetrometer	

SPT 'N' ValueStandard Penetration Test 'N' Value – refers to the number of blows from a 63.5kg hammer free falling a
height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.DCPTDynamic Cone Penetration Test – Continuous penetration of a 50 mm outside diameter, 60° conical
steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone
penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

UNIFIED SOILS CLASSIFICATION

MAJOR	DIVISIONS	GROUP SYMBOL	TYPICAL DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or
	GRAVEL		no fines.
	AND	GP	Poorly-graded gravels or gravel-sand mixtures, little
	GRAVELLY		or no fines.
COARSE	SOILS	GM	Silty gravels, gravel-sand-silt mixtures.
GRAINED		GC	Clayey gravels, gravel-sand-clay mixtures.
SOILS		SW	Well-graded sands or gravelly sands, little or no
	SAND AND		fines.
	SANDY	SP	Poorly-graded sands or gravelly sands, little or no
	SOILS		fines.
		SM	Silty sands, sand-silt mixtures.
		SC	Clayey sands, sand-clay mixtures.
		ML	Inorganic silts and very fine sands, rock flour, silty or
			clayey fine sands or clayey silts with slight plasticity.
		CL	Inorganic clays of low to medium plasticity, gravelly
	SILTS AND		clays, sandy clays, silty clays, lean clays.
FINE	CLAYS		$(W_L < 30\%).$
GRAINED	$W_L{<}50\%$	CI	Inorganic clays of medium plasticity, silty clays.
SOILS			$(30\% < W_L < 50\%).$
		OL	Organic silts and organic silty-clays of low plasticity.
		MH	Inorganic silts, micaceous or diatomaceous fine
	SILTS AND		sandy or silty soils, elastic silts.
	CLAYS	СН	Inorganic clays of high plasticity, fat clays.
	$W_L > 50\%$	OH	Organic clays of medium to high plasticity, organic
			silts.
HIGHLY		Pt	Peat and other highly organic soils.
ORGANIC			
SOILS			
CLAY SHALE			
SANDSTONE			-
SILTSTONE]
CLAYSTONE			7
COAL			7

				DC4				סרי		N-		04					МГ	TDIC	TH	URBË	R
				RE	COR		BOI	KEI	HOLE	NO	FSI	-01		1 0	DF 1						
W.P	4044-22-00	LOC	CATIO	<u>1</u> ИС	MTM Z	one 10: N	4 931	408.7	7 E 361	060.5							ORIG	INATED	<u>۲ BY</u>	/P	
DIST _	HWY <u>35</u>	BOF	REHC	DLE T	YPE_	C.M.E. 75	i, Track	Mou	nted (Mo	rooka 1	100), S	olid St	em Aug	er			COM	PILED BY		AR	
DATUM	Geodetic	DAT	Έ <u>2</u>	023.05.	31 - 20	23.05.31	LAT	ITUE	DE _4	4.52049	94	LON	GITUD	DE	-78.79	2266	CHE	CKED BY	(CN	
	SOIL PROFILE		5	SAMPL	ES	н.	ALE	DYN RES	NAMIC C SISTANC	DNE PE E PLOT		ATION		PLASTIC	NATI	JRAL	LIQUID	F	RE	MAR	KS
		L01	щ		IES	WAT FIONS	N SC		20	40 E	50 8	30 1	00		CON	TURE TENT	LIMIT	UNIT (EIGF	GR	& AIN S	ΖE
ELEV DEPTH	DESCRIPTION	AT PI	IMBE	ГУРЕ	VALL		ATIO	SHI	EAR ST UNCON	RENG	TH kF +	a FIELD	VANE	 		>		< 	DIST	RIBU	TIO
		STR	Ĩ	'	z	GRO	ELEV	•			LX	LAB V	ANE	WA		NTEN	T (%)	7		(%)	
0.0	GROUND SURFACE Silty SAND, trace rootlets	\bowtie						-	20	+0 (1	KN/m °	GR S	SA S	
	Loose Dark Brown	\otimes	1	SS	4									0							
	Moist		1																		
	(FILL)		}—																		
		\bigotimes	2	ss	5		271							0					0	78 22	2
		\otimes																			
270.5	Silty SAND	KX III	<u> </u>																		
	Loose to Compact		3	SS	4									0							
	Moist						270														
			4	SS	6									0					0	S8 32	2
							269														
			5	SS	24									0							
267.9							268	-	_												
4.1	Silty SAND , some gravel Compact Brown					∷=∷															
	Moist																				
			6	ss	23									0							
							267							-							
							266		_												
			. 7	SS	25																
					20																
						1:8:1															
							265														
			ß	22	۵ ۵														14	:0 0	
263.8							264		_										14	5 5	
8.2	END OF BOREHOLE AT 8.2 m.	-																			
	BOREHOLE CAVED TO 7.9 m AND REMAINED DRY UPON																				
	COMPLETION. BOREHOLE BACKFILLED WITH																				
	BENTONITE.																				
	WATER LEVEL READINGS																				
	DATE DEPTH(m) ELEV.(m) 2023.06.08 Dry																				
			1																		

8

Ministry of Transportation

+ ³ , \times ³: Numbers refer to Sensitivity

²⁰ ¹⁵ **0** (%) STRAIN AT FAILURE

				REC	COR	d of	BOF	REHO	OLE	Nol	MSB	8-01		1 0)F 2		ME	TRIC	
/.P	4044-22-00	LOC	ATIC	DN _	MTM Zo	one 10: 1	N 4 931	324.3	E 361	007.0								INATED	BY <u>vp</u>
IST _	HWY <u>35</u>	BOF	REHC	DLE T	YPE_	C.M.E. 7	5, Track	Mounte	ed (Moi	rooka 1	100), S	Solid Ste	em Aug	er				PILED B	(
ATUN	Geodetic	DAT	E _2	023.05	.30 - 20	23.05.30	LAT	TUDE	4	4.51973	8	LON	GITUD	E	-78.79	2948	CHE	CKED BY	CN
					FS			DYNA		ONE PE	NETR	ATION							ĺ
.EV PTH	DESCRIPTION	AT PLOT	UMBER	IX PE	VALUES	DUND WATER	ATION SCALI	SHEA O UI	AR ST	E PLOT 40 6 RENG FINED	0 E TH kF +	 80 1 Pa FIELD	00 VANE		NAT MOR CON	URAL STURE ITENT W	LIQUID LIMIT WL	▲ UNIT WEIGHT	REMAF & GRAIN S DISTRIBU (%)
0.2		STR	Ī		z	GRO CRO	ELEV	• Q 2	UICK T 20 ∠	RIAXIA 40		LAB V 80 1	ANE 00	WA ¹	TER C0	DNTEN	IT (%) 60	kN/m 3	GR SA
0.0	Silty SAND, trace rootlets	\boxtimes								1		T	1				Ť	KN/III	
	Loose Dark Brown Moist (FILL)		1	SS	4		270							0					
			2	SS	6		269							0					
1.5	SILT and SAND , trace silt Loose to Compact Brown Moist		3	SS	9	-								0					
			. 4	SS	8		268							0					0 43 5
			5	SS	22	-	267							0					
6.1						-													
4.1	SAND, some gravel to gravelly, trace to some silt Compact to Very Dense Brown Moist					-	266												
			6	SS	62	-	265							0					
			7	SS	26		264							0					31 61
							263							0					
			. 8	SS	27	-								o					
						-	262												
						-	261												
			9	SS	70									0 0					

36708 GD 1 6-22-23 C F ۵ ć a a ATAS2 20201 Ē

Ministry of Transportation Ontario
--

				REC	COR	D OF	BOF	REH	OLE	Nol	MSB	-01		2 C	F 2		ME	TRIC		
W.P	4044-22-00	LOC	CATIO	и	MTM Zo	one 10: I	N 4 931	324.3	E 361	007.0							ORIG	INATED	BY <u>VP</u>	
DIST _	HWY <u>35</u>	BOF	REHC	T SLE ר	YPE_	C.M.E. 7	5, Track	Mount	ed (Mor	ooka 1	100), S	olid Ste	em Auge	er			COM	PILED BY	/AR	
DATUN	Geodetic	DAT	Е <u>2</u>	023.05.	30 - 20	23.05.30	LAT	TUDE	4	1.51973	8	LON	GITUD	E	-78.79	2948	CHE	CKED BY	CN	
	SOIL PROFILE		S	Sampl	.ES	н.	ALE	DYNA RESIS	MIC CO	DNE PE E PLOT		ATION			NAT	URAL			REM	ARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	LEVATION SCA	2 SHEA 0 U • Q	AR STI NCONF	0 6 RENG INED RIAXIAI	0 8 TH kP + L ×	30 1 Pa FIELD LAB V	00 VANE ANE			STURE ITENT W D DNTEN		WEIGH	GRAII DISTRI (⁴	& N SIZE BUTION %)
	Continued From Previous Page		_				ш	2	20 4	0 6	3 0	30 1	00	2	0 4	10 E	50	kN/m ⁻³	GR SA	SI CL
	SAND, some gravel to gravelly, trace to some silt Compact to Very Dense Brown Moist					-	260													
			. 10	SS	24	-	259							0						
257.4			• 11	SS	30		258							0 0					10 75	14 1
	END OF BOREHOLE AT 12.8 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.																			

							DOF			N- "		00							HIORDER
				REC	OR	DOF	BOF	(EH)	JLE	NOI	NSB	-02		1 C)F 2			IRIC	
W.P	4044-22-00	LOC		1_ NC		one 10: I	<u>v 4 931</u>	368.0	E 361	029.4									BY <u>VP</u>
	HWY <u>35</u>				1 PE_(<u>J.M.E. 7</u>	<u>5, Irack</u>		ed (Mor	<u>ooka 1</u>	<u>100), S</u>	olid Ste	em Aug	er	79 70	0661		PILED BY	
DATON	Geodetic		∟ <u>∠</u> 	023.05.	31 - 20.	<u>1</u>				NE PE			GITUL	/└	-10.19	2001			
	SOIL PROFILE	ŌŢ	2	SAMPL	ES S	WATER	N SCALE	RESIS					00	PLASTIC LIMIT	NAT MOIS CON	URAL STURE NTENT	LIQUID LIMIT	UNIT EIGHT	REMARKS & GRAIN SIZE
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PL	NUMBE	ТҮРЕ	"N" VALU	SROUND	LEVATIO	SHEA 0 UI • QI	AR STI NCONF	RENG INED RIAXIAI	TH kP + L ×	a FIELD LAB V	VANE ANE	WA1	ER CO	o ONTEN	шч Т (%)	≥ 7	DISTRIBUTIO (%)
271.3	GROUND SURFACE						Ξ	2	20 4	0 6	i0 ε	30 1	00	2	0 4	40 (60 	kN/m ³	GR SA SI
	Very Loose Dark Brown Moist (FILL)		1	SS	4		271							-0					
			2	SS	4		270							0					
269.8 1.5	Silty SAND Loose to Compact Brown Moist		3	SS	6									o					
			4	SS	20		269							0					
			5	SS	22		268							0					0 82 17 Non-plastic
							267												
			6	SS	28		000							0					
							200												
			7	SS	18		265							0					
							264												
			8	SS	26									0					
							263												
			9	SS	30		262							Þ					0 85 15
		I[:]:																	

Mini Tran Ontario	stry of sportation																		THURBER	2
				REC	COR	D OF	BOF	REH	OLE	No	MSB	-02		2 0	DF 2		ME	TRIC		
W.P	4044-22-00	_ LOC	CATIO	ОМ _	MTM Zo	one 10: I	N 4 931	368.0	E 361	029.4								GINATED	BY <u>vp</u>	
DIST _	HWY <u>35</u>	_ BOF	REHO	OLE T	YPE	C.M.E. 7	5, Track	Mount	ed (Mo	rooka 1	100), S	olid Ste	em Aug	er				IPILED B'	Y	
DATUN	Geodetic	_ DAT	E <u>2</u>	023.05	.31 - 20	23.05.31	LAT	ITUDE	4	4.52012	29	LON	GITUE)E	-78.79	2661	CHE	CKED BY	CN	
	SOIL PROFILE		5	Sampl	ES	н	ГЕ	DYNA RESIS	MIC CO STANC	one pe E plot		ATION		DIASTIC	, NAT	TURAL		_ ⊢	REMAR	<s< td=""></s<>
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	ELEVATION SCA	2 SHEA 0 U • Q	AR ST NCONF UICK T	10 € RENG FINED RIAXIA 10 €	50 8 TH kP + L × 50 8	30 1 Pa FIELD LAB V 30 1	00 VANE ANE 00			STURE NTENT W O ONTEN 40 (шин w L T (%)	LINN MEIGH	& GRAIN SI DISTRIBUT (%) GR SA SI	IZE FION CL
259.6 11.7	Silty SAND Loose to Compact Brown Moist		10	SS	20	-	261 260							o				-		
	Brown Moist	· · · · · · · · ·	11	SS	33	-	259							0				-	0 91 9	0
258.5	END OF BOREHOLE AT 12.8 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.																			

+ ³, × ³: Numbers refer to Sensitivity

Ontario	nsportation																		THURBE	R
				REG	COR	D OF	BO	REH	OLE	No	SEP	-01		1 0)F 1		ME	TRIC		
W.P.	4044-22-00	_ LOC	ATIC	<u>_</u> NC	MTM Z	one 10: I	N 4 931	332.1	E 361	133.4							ORIG	SINATED	BY <u>vp</u>	
DIST	HWY <u>35</u>		REHC		YPE_	C.M.E. 7	5, Track	Mount	ed (Moi	rooka 1	100), S	olid Ste	em Aug	er			сом	PILED BY	/AR	
DATU	M Geodetic	_ DAT	E <u>2</u>	023.05.	31 - 20	23.05.31	LAT	ITUDE	4	4.51979	99	LON	GITUE)E	-78.79	1357	CHE	CKED BY	CN	
	SOIL PROFILE		5	SAMPL	.ES	ATER	SCALE	DYNA RESIS		DNE PE E PLOT		ATION	00	PLASTIC LIMIT	NAT MOIS	URAL TURE	LIQUID LIMIT	uT GHT	REMAR &	KS
ELEV DEPTH		STRAT PLO	NUMBER	ТҮРЕ	"N" VALUES	GROUND W/ CONDITIO	ELEVATION S	SHEA O UI • Q	AR ST NCONF UICK T	RENG	TH kP +	a FIELD	VANE ANE	₩ _P ⊢ ₩A1			₩∟ —— T (%)	т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	GRAIN S DISTRIBU (%)	IZE TION
0.0	Silty SAND Loose to Compact Brown	X	1	SS	5		271							0				KIN/M °	GR SA S	
200.0	(FILL)		2	SS	15	-	270							0					0 79 20	D 1
1.4	Silty SAND Compact Brown Moist		3	SS	17		269							0						
			4	SS	15	-								o						
			5	SS	26		268							o					0 71 29	э о
							267													
266.0			6	SS	25									0						
5.2	END OF BOREHOLE AT 5.2 m. BOREHOLES WAS OPEN AND REMAINED DRY UPON COMPLETION OF DRILLING. BOREHOLE BACKFILLED WITH BENTONITE.																			

ONTMT4S2 2020LIBRARY(MTO) - COPY GLB MTO-36708.GPJ 6-22-23

+ ³, × ³: Numbers refer to Sensitivity

²⁰ 15 0 5 10 (%) STRAIN AT FAILURE

				REC	ORE	OF I	BOR	EHO	LEN	lo S	WM	P-01		1 0)F 1		ME	TRIC		
W.P.	4044-22-00	LOC	ATIO	N NC	MTM Z	one 10: 1	N 4 931	286.4 I	E 361 ()12.5							ORIG	INATED	BY VP	
DIST -	HWY 35	BOF	REHO		/PE	C.M.E. 7	5, Track	Mounte	ed (Mor	ooka 1	100), S	olid Ste	em Aug	ər			СОМ	PILED B	AR	
DATUM	Geodetic	_ DAT	E _2	023.05.	30 - 20	23.05.30	LAT	ITUDE	44	1.51939	96	LON	GITUD	E _	-78.79	2883	CHE	CKED BY	CN	
					EQ			DYNA		NE PE	NETRA	ATION								
					.L.3	ATER	SCALE	RESIS		E PLOT			00	PLASTIC LIMIT	NATI MOIS	JRAL TURE	LIQUID LIMIT	나 H H	REMA &	RKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLO	NUMBER	ТҮРЕ	"N" VALUES	SROUND W/ CONDITIO	LEVATION S	SHEA O UI O QI	NCONF	RENG INED RIAXIA	TH kP + L ×	a FIELD LAB V	VANE ANE	WP H			₩∟ —— T (%)	۲ ۲	GRAIN DISTRIB (%	SIZE SUTIO
269.9	GROUND SURFACE					Ŭ	ш	2	0 4	0 6	80 8	80 1 I	00	2	0 4	·0 6	50 	kN/m ³	GR SA	SI (
	Silfy SAND, trace rootiets Very Loose to Loose Dark Brown to Brown Moist (FILL)		1	SS	4	-								ο					0 52	48
			2	SS	5		269								>					
268.5 1.4	SILT and SAND																			
	Very Loose Brown Wet		. 3	SS	2	-	268							0						
266.9			• 4	ss	2	-	267							0					0 40	60
3.0	SAND, trace silt		}																	
	Brown Moist	• •	• 5	SS	10									0						
							266													
			6	SS	26		265							0						
			·				264													
							201													
263.2			7	ss	23									0						
6.7	END OF BOREHOLE AT 6.7 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.																			

ONTMT4S2 2020LIBRARY(MTO) - COPY GLB MTO-36708.GPJ 6-22-23

+ ³, × ³: Numbers refer to Sensitivity

Mir Tra Ontario	nistry of nsportation																			HUR	BER	
			l	REC	ORE	OF	BOR	EHO	LE	lo S	WM	P-02		1 0)F 1		ME	TRIC	;			
W.P.	4044-22-00	LOC	ATIC	<u>_</u> NC	MTM Zo	one 10: I	N 4 931	303.1 I	E 361	068.2							ORIG	SINATED	BY	VP		
DIST	HWY <u>35</u>	BOF	REHC	T SLE י	YPE	C.M.E. 7	5, Track	Mounte	ed (Moi	ooka 1	100), S	olid Ste	em Aug	er			COM	IPILED B	Y _	AR		
DATU	M _Geodetic	DAT	Е <u>2</u>	023.05.	.30 - 20	23.05.30	LAT	ITUDE	4	4.51954	12	LON	GITUE)E	-78.79	2180	CHE	CKED BY		CN		
	SOIL PROFILE		5	Sampl	.ES	К	NLE	DYNA RESIS	MIC CO	DNE PE E PLOT		ATION		DIASTIC	NAT	URAL		⊢ ⊢	F	REM/	ARK	 3
ELEV DEPTH	DESCRIPTION	RAT PLOT	NUMBER	ТҮРЕ	" VALUES	OUND WATE	VATION SC/	2 SHEA O UI	R ST	RENG	50 8 H KP +	30 1 Pa FIELD	00 VANE					UNIT WEIGH	G DIS	8 RAIN STRIE (؟	& N SIZ BUTI %)	E ON
269.6	GROUND SURFACE	ST			ŗ	U U U U		• Qi 2	UICKI !0 ∠	RIAXIA 10 E	L X 50 8	LAB V 30 1	ANE 00	2	20 4	10 E	i (70)	kN/m ³	GR	SA	SI	СІ
0.0	Silty SAND, trace rootlets Very Loose Dark Brown Moist (FII 1.)		1	SS	2		269							o				-	0	67	30	3
200.0			2	ss	4									o								
1.4	Silty SAND		_				268															
	Compact to Very Dense Brown Moist		3	SS	10									0					3	67	25	5
			4	SS	13		267											-				
			5	SS	13		266							o				-				
			6	ss	18		265							0					0	62	38	0
							264											-				
262.9			7	SS	95		263							0 0				-				
6.7	END OF BOREHOLE AT 6.7 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE. WATER LEVEL READINGS DATE DEPTH(m) ELEV.(m) 2023.06.08 Dry -																					

GIR MTO-36708 GDI 6-22-23 ć ATAS2 20201 IRE/ NTNO

+ ³, \times ³: Numbers refer to Sensitivity

²⁰ 15 **9** ⁵ 10 (%) STRAIN AT FAILURE

			I	REC	ORE	OF I	BOR	EHO	LEN	lo S	WM	P-03		1 0)F 1		ME	TRIC		
W.P	4044-22-00	_ LOC	ATIC	DN _I	MTM Z	one 10: I	N 4 931	253.9	E 361	059.0								INATED	BY <u>vp</u>	
DIST _	HWY <u>35</u>	_ BOF	REHC	ר SLE די	PE_	C.M.E. 7	5, Track	Mounte	ed (Mor	ooka 1	100), S	olid Ste	em Aug	er			СОМ	PILED B	YAR	
DATUN	Geodetic	_ DAT	E _2	023.05.	30 - 20	23.05.30	LAT	TUDE	4	1.51910	01	LON	GITUD	E _	-78.79	2301	CHE	CKED BY	CN	
	SOIL PROFILE				FS		ш	DYNA		ONE PE	NETR	ATION								
						ATER	CALI	RESIS			\geq	20 1	00	PLASTIC LIMIT	NAT MOIS	URAL	LIQUID LIMIT	표 분	REM	ARKS ≩
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLO	NUMBER	ТҮРЕ	"N" VALUES	ROUND W	EVATION S	2 SHEA 0 UI • QI	AR STI NCONF	RENG	TH kF + L ×	a FIELD	VANE ANE	W P I WA			₩∟ —— T (%)	MEIO MEIO Y	GRAIN DISTRII (?	I SIZE 3UTIO 6)
270.0	GROUND SURFACE		<u> </u>			ļ –	Ξ	2	20 4	0 6	50 8 	30 1	00	2	20 4	10 E	50 	kN/m ³	GR SA	SI C
0.0	SILI and SAND Loose Dark Brown Moist (FILL)		1	AS	-									0						
200.0			2	SS	5		269								0				0 40	57
268.6	Sandy SILT					1														
	Loose to Compact Greish Brown Moist	· . · · . · · . ·	• 3	ss	3	-	268								•					
		· · · · · · · · · · · ·	• 4	SS	4									o						
		· · · · · · · · ·	· 5	SS	12		267							c	>				0 35 Non-plas	62 stic
		· · · · · · · · · · · · · · · · · · ·					266													
		· · · · · · · · · · · ·	6	ss	13	-	265							0						
		· · · · · · · · · · · · · · · · · · ·					264													
263.3		· · · · · · · · ·	7	SS	21									0						
6.7	END OF BOREHOLE AT 6.7 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.																			

ONTMT4S2 2020LIBRARY(MTO) - COPY GLB MTO-36708.GPJ 6-22-23

+ ³, × ³: Numbers refer to Sensitivity

²⁰ 15 **9** ⁵ 10 (%) STRAIN AT FAILURE

Untario																			THU	RBER
				REC	COR	D OF	BOF	EH	OLE	No	VMG	i-01		1 C)F 2		ME	TRIC		
W.P	4044-22-00		CATIO	ON _I	MTM Zo	one 10: N	4 931	374.7	E 361	101.4							ORIG	INATED	BY <u>VP</u>	,
DIST _	HWY <u>35</u>	BOF	REHO	T SLE י	PE_	C.M.E. 75	i, Track	Mount	ed (Mor	ooka 1	100), S	olid Ste	em Aug	er			COM	PILED B	(2
DATUM	Geodetic	DAT	E <u>2</u>	2023.05.	31 - 20	23.05.30	LAT	TUDE	E44	4.52018	34	LON	GITUE	DE	-78.79	1755	CHE	CKED BY	CN	1
	SOIL PROFILE		5	SAMPL	.ES	۲	Щ	DYNA RESIS	MIC CO	DNE PE E PLOT		ATION			ΝΔΤΙ				REM	
<u>ELEV</u> DEPTH	DESCRIPTION	SAT PLOT	UMBER	ТҮРЕ	VALUES	DUND WATE ONDITIONS	/ATION SCAI	2 SHEA O U	20 4 AR STI NCONF	RENG	50 8 TH kF +	30 1 Pa FIELD	00 VANE			OTAL STURE ITENT W O		UNIT Weight	GRAI DISTR	& N SIZE IBUTIO %)
271 2	GROUND SURFACE	STE	z		ŗ	U U U U U U U U U	ELE	• Q	UICK TI 20 4	RIAXIA 10 6	L X 50 8	LAB V. 30 1	ANE 00	2 WA	1 ER CC 0 4	JNTEN 10 6	I (%) 60	• kN/m ³	GR SA	SI (
0.0	Silty SAND, trace gravel Very Loose Dark Brown Moist	X	1	ss	4		271							0						
	(FILL)		2	SS	2		270							0						
269.8						-	210													
1.4	SILT and SAND Loose to Compact Brown to Grey Moist			ss	4		269							0						
			4	SS	20									o						
			5	SS	16		268							0						
							267													
			6	SS	11		266							0					0 44	52
			1				200													
265.6 5.6	SAND, some silt Compact Brown Moiet		•			-														
	With St.		7	ss	28	-	265							0						
		· · · · · · · · · · · · · · · · · · ·					264													
			8	SS	22		263													
262.5 8.7	Sandy SILT Dense																			
	Brown Moist		9	ss	31		262							0					0 23 Non-pla	76 astic
			┣																	
	Continued Next Page	[].]],				. 3 .	. 3 N	umber	s refer t	l	20									

Ministry of Transportation

Minia Tran Ontario	stry of sportation																		THURBER
				REC	OR	D OF	BOF	REH	OLE	No	VMG	i -01		2 0)F 2		ME	TRIC	
W.P	4044-22-00	_ LOC	ATIC	<u>1</u> NC	MTM Zo	one 10: 1	N 4 931	374.7	E 361	101.4							ORIG	INATED	BY <u>vp</u>
DIST _	HWY <u>35</u>	_ BOF	REHC		YPE_	C.M.E. 7	5, Track	Mount	ed (Moi	rooka 1	100), S	olid Ste	em Aug	er			сом	PILED B	/AR
	Geodetic	_ DAT	E _2	023.05.	<u> 31 - 20</u>	23.05.30	LAT	ITUDE	4	4.52018	34	LON	GITUD)E	-78.79	1755	CHE	CKED BY	CN
	SOIL PROFILE		5	SAMPL	.ES	Ľ	Щ	DYNA RESIS	MIC CO	ONE PE E PLOT		ATION			NAT	URAI			REMARKS
ELEV DEPTH	DESCRIPTION Continued From Previous Page	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	ELEVATION SCA	2 SHEA 0 U • Q 2	AR ST NCONF UICK T	40 6 RENG FINED RIAXIA 40 6	50 8 TH kP + L × 50 8	30 1 Pa FIELD LAB V, 30 1	00 VANE ANE 00					LHDIAM KN/m ³	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
261.0							261												
10.2	SAND, some silt, trace to some gravel Dense Brown Moist		10	SS	36	-	260							0					1 89 10 0
			11	SS	34	-	259							0					
258.4	END OF BOREHOLE AT 12.8 m. BOREHOLE WAS OPEN AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.																		

+ ³, \times ³: Numbers refer to Sensitivity

											<i>(</i>)								THU	KREK	-
				REC	COR	D OF	BOF	REH	OLE	No۱	/MG	6-02		1 C)F 2		ME	TRIC			
W.P	4044-22-00	LOC	ATIC	NC	MTM Zo	one 10: I	N 4 931	406.6	E 361	119.0								INATED	BY <u>V</u>	>	
DIST _	HWY <u>35</u>	BOF	REHC	ר DLE T	/PE_	C.M.E. 7	5, Track	Mount	ed (Moi	ooka 1	100), S	olid Ste	em Aug	er				PILED B	YAF	٦	_
DATUN	Geodetic	DAT	E <u>2</u>	023.05.	31 - 20	23.05.31	LAT	TUDE	4	4.52047	0	LON	GITUE)E	-78.79	1529	CHE	CKED BY	CI	N	
	SOIL PROFILE		5	Sampl	ES	К	ΓE	DYNA RESIS	MIC CO STANCI	DNE PE E PLOT		ATION		DI AOTIO	NAT	URAL		_ ⊢	REM	ЛARK	<s< td=""></s<>
		от	~		S	NATE	I SC∕	2	20 4	0 6	0 8	30 1	00	LIMIT	MOR	STURE	LIMIT	INIT IGH		&	75
ELEV	DESCRIPTION	л Р	MBEF	ΥPE	ALUI			SHE/		RENG	TH kP	a Pa		^w Р —		• •——	₩L	N N	DISTR		2E 10
ЕРІН		STRA	Ĩ	-	> "N"	COL	LEVA	0 0 • Q	UICK T	RIAXIA	L X	LAB V	ANE	WAT	TER CO	ONTEN	IT (%)	Y		(%)	
272.4	GROUND SURFACE		-					2	20 4	10 6	3 0	30 1	00	2	0 4	40 (60	kN/m ³	GR SA	A SI	_(
0.0	Silty SAND , trace rootlets, trave gravel		1	22	1																
	Very Loose to Loose Dark Brown		1	33	4		272														
	Moist																				
	(FILL)																				
			2	SS	3																
271.0		-	\vdash			1	271														
1.4	Silty SAND Compact					1															
	Brown		3	SS	11									0							
	Wolst					-															
						1	270														
			4	SS	25									0					1 86	5 13	
269.4																					
3.0	SAND and GRAVEL, trace silt		-			-															
	Loose to Very Dense Brown	•	5	ss	40		260							0							
	Moist						209														
							268														
			6	SS	57									0					39 52	29	
		••••				-															
		• * • • •					267														
			-			-															
			7	ss	9		266							•							
		••••																			
							265														
						-															
														°							
		 	8	55	62									0							
		• * • • • • • •	-			1															
							264											1			
		•••• ••••				1															
			9	SS	9		263							0							
						-															
		.]		1	1	I	I	1	1	1	1	1			1	1				

10 (%) S

8	Ministry of Transportation
Ontari	0

				REC	COR	D OF	BOF	REHOLE	ENo	VMG	-02		2 0	F 2		ME	TRIC	
W.P	4044-22-00		CATIC	<u>1</u> NC	MTM Zo	one 10: M	N 4 931	406.6 E 36	119.0							ORIG	INATED	BY <u>VP</u>
DIST _	HWY <u>35</u>	BOF	REHC	DLE T	YPE_	C.M.E. 7	5, Track	Mounted (M	orooka 1	100), S	olid Ste	m Auge	er			СОМ	PILED BY	′ <u>AR</u>
DATUN	I Geodetic	DAT	Е <u>2</u>	023.05.	31 - 20	23.05.31	LAT	ITUDE	44.52047	70	LONG	GITUD	E	-78.79	1529	CHE	CKED BY	CN
	SOIL PROFILE		5	Sampl	.ES	ATER NS	SCALE	DYNAMIC (RESISTAN)	CONE PE CE PLOT		ATION	0	PLASTIC LIMIT	NATI MOIS		LIQUID LIMIT	IIT SHT	REMARKS &
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLO	NUMBER	ТҮРЕ	"N" VALUES	GROUND W/ CONDITIO	ELEVATION S	SHEAR S O UNCOM QUICK		TH kP + L ×	a FIELD		₩ P I WAT			₩L T (%)	7	GRAIN SIZE DISTRIBUTION (%)
	Continued From Previous Page SAND and GRAVEL, trace silt Loose to Very Dense Brown Moist						262		40 6								kN/m ⁻³	GR SA SI CL
			10	ss	12								o					33 51 10 6
							261											
259.6			11	SS	71		260						0					
12.8	END OF BOREHOLE AT 12.8 m. BOREHOLE WAS CAVED to 7.3 m AND REMAINED DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.									20								

		LOG OF	TEST P	T : 1	ГР-01			
PROJEC	T NO.:	36708	CLIENT:		Dillon		DATE:	June 7, 2023
PROJEC	T:	Highway 35 Patrol Yard	METHOD:	B95	Backhoe Lo	ader	LOGGED:	КІ
LOCATIO	DN:	Kawartha Lake, ON	CONTRACTOR:	You	ng's Constru	ction	CHECKED:	AR
		N 4,931,294 E 361,035	SURFACE ELEV.		270.4			Page 1 of 1
Depth	Depth	STRATIGRAPHY			Sample	Soils	Water Content	Grain Size Distribution (%)
(ft)	(m)		<u> </u>		Doptii (iii)	01400	(%)	GR SA SI CL
	• 0 - • • •	moist (FILL)	cs, brown,	2				
1.0	· 0.2			-				
	0.4		c	.4				
2.0	0.6		с	.6 -				
	0.8		c	.8 -				
	· 1.0 -		1	.0 1.0				
4.0	• 1.2		1	.2 -				
5.0	1.4		1	.4				
	1.6		1	.6 -				
6.0	· 1.8		1	.8 -				
· ·	-2.0	Test pit was terminated at a death of	of 2.0 m	.0 2.0				
7.0-	.2.2	Open test pit was terminated at a depth of excavation. Test pit was backfilled using excava material.	tion of	- - .2 -				

SAND GRAVEL CLAY & SILT Fine Fine Medium Coarse Coarse GRAIN SIZE IN MICROMETERS 2 3 4 5 10 20 30 40 50 75µm 150µm 300µm 600µm 1.18mm 2.36mm 9.5mm 19.0mm 37.5mm 63.0mm | 53.0mm 75.0mm 2.00mm 53µm 106µm 250µm 425µm 8<u>5</u>0µm 4<u>.7</u>5mm 13.2mm 26.5mm 100 0 95 90 10 85 80 20 75 30 70 65 60 40 05 PERCENT RETAINED PERCENT PASSING 55 50 LEGEND 45 SAMPLE BΗ SYMBOL 40 60 FST-01 1.07 ۲ 35 SEP-01 1.07 \mathbf{X} ø 30 70 SWMP-01 0.30 25 SWMP-02 0.30 * Ø 80 20 SWMP-03 \odot 1.07 15 90 10 5 0 100 ³/₈["] ¹/₂["] ³/₄["] 1" 1¹/₂["] 2" 2¹/₂["] 3" 10 20 30 40 270 200 140 100 60 50 40 30 20 16 10 8 4 1 2 3 5 4 MINISTRY SIEVE DESIGNATION (Imperial) GRAIN SIZE DISTRIBUTION FIG No B-1 Ministry of V Transportation G.W.P. 4044-22-00 Silty SAND FILL Ontario

SAND GRAVEL CLAY & SILT Fine Fine Medium Coarse Coarse GRAIN SIZE IN MICROMETERS 1.18mm 2 3 4 5 10 20 30 40 50 75µm 150µm 300µm 600µm 2.36mm 9.5mm 19.0mm 37.5mm 63.0mm | 53.0mm 75.0mm 106µm . 250µm 2.<u>0</u>0mm 53µm 425µm 850µm 4.75mm 13.2mm 26.5mm 100 0 95 /G 90 10 85 80 20 75 X 30 70 65 60 40 r Retained PERCENT PASSING X 55 50 PERCENT LEGEND 45 SAMPLE BΗ SYMBOL 40 60 FST-01 2.59 • 35 FST-01 7.92 30 70 MSB-01 2.59 25 MSB-01 12.50 \star 80 20 \odot MSB-02 3.35 15 MSB-02 9.45 Ŷ 90 10 SEP-01 3.35 Ο 5 SWMP-01 2.59 \triangle 100 0 3/8 ¹/₂" ³/4 1" 1¹/2["] 2" 2¹/2["] 3" 2 4 5 10 20 30 40 270 200 140 100 60 50 40 30 20 16 10 8 4 1 3 MINISTRY SIEVE DESIGNATION (Imperial) GRAIN SIZE DISTRIBUTION FIG No B-2 Ministry of V Transportation G.W.P. 4044-22-00 Silty SAND to Sandy SILT Ontario

SAND GRAVEL CLAY & SILT Fine Fine Medium Coarse Coarse GRAIN SIZE IN MICROMETERS 600µm 2.36mm 2 3 4 5 10 20 30 40 50 75µm 150µm 300µm 1.18mm 9.5mm 19.0mm 37.5mm 63.0mm 1 | 53.0mm 75.0mm 106µm 53µm 250µm 8<u>5</u>0µm 75mm 13.2mm 26.5mm 425µm Ոՠՠ 100 0 95 90 10 85 80 20 75 30 70 65 60 40 r Retained PERCENT PASSING 55 50 PERCENT LEGEND 45 SAMPLE SYMBOL BΗ 40 60 SWMP-02 1.83 • 35 SWMP-02 4.88 30 70 SWMP-03 3.35 25 VMG-01 4.88 \star 80 20 VMG-01 \odot 9.64 15 VMG-02 2.59 Q 90 10 5 100 0 ³/₈["] ¹/₂["] ³/₄["] 1" 1¹/₂["] 2" 2¹/₂["] 3" 10 20 30 40 270 200 140 100 60 50 40 30 20 16 10 8 4 1 2 3 MINISTRY SIEVE DESIGNATION (Imperial) GRAIN SIZE DISTRIBUTION FIG No B-3 Ministry of V Transportation G.W.P. 4044-22-00 Silty SAND to Sandy SILT Ontario

SAND GRAVEL CLAY & SILT Fine Medium Fine Coarse Coarse GRAIN SIZE IN MICROMETERS 2 3 4 5 10 20 30 40 50 75µm 150µm 300µm 600µm 1.18mm 2.36mm 9.5mm 19.0mm 37.5mm 63.0mm | 53.0mm 75.0mm 2.00mm 53µm 106µm . 250µm 425µm 850µm 4<u>.7</u>5mm 13.2mm 26.5mm 100 0 95 90 10 85 80 20 75 30 70 65 60 40 0 PERCENT RETAINED PERCENT PASSING 55 50 LEGEND 45 SAMPLE BH SYMBOL 40 60 MSB-02 12.50 ۲ 35 VMG-01 10.97 30 70 25 80 20 15 90 10 5 100 οL ³/₈" ¹/₂" ³/₄" 1" 1¹/₂" 2" 2¹/₂" 3" 3 4 5 4 2 10 20 30 40 270 200 140 100 60 50 40 30 20 16 10 8 1 MINISTRY SIEVE DESIGNATION (Imperial) GRAIN SIZE DISTRIBUTION FIG No B-4 Ministry of V Transportation G.W.P. 4044-22-00 SAND Ontario

SAND GRAVEL CLAY & SILT Fine Medium Fine Coarse Coarse GRAIN SIZE IN MICROMETERS 2 3 4 5 10 20 30 40 50 75µm 150µm 300µm 600µm 1.18mm 2.36mm 9.5mm 19.0mm 37.5mm 63.0mm 1 | 53.0mm 75.0mm 2.00mm <u>26</u>.5mm 53µm 106µm . 250µm 425µm 850µm 4.75mm 13.2mm 100 0 95 X 90 10 85 80 20 75 30 70 65 60 40 05 PERCENT RETAINED PERCENT PASSING 55 50 LEGEND 45 SAMPLE BH SYMBOL 40 60 MSB-01 6.40 ۲ 35 VMG-02 4.88 \mathbf{X} 30 70 X VMG-02 10.97 25 80 20 15 90 10 5 100 0 ³/₈["] ¹/₂["] ³/₄["] 1" 1¹/₂["] 2" 2¹/₂["] 3" 4 2 3 4 10 20 30 40 270 200 140 100 60 50 40 30 20 16 10 8 1 5 MINISTRY SIEVE DESIGNATION (Imperial) GRAIN SIZE DISTRIBUTION FIG No B-5 Ministry of V Transportation G.W.P. 4044-22-00 SAND and GRAVEL Ontario

FINAL REPORT

CA40119-JUN23 R1

36708, Hwy 35 Patrol Yard

Prepared for

Thurber Engineering Ltd.

FINAL REPORT

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Ali Rajaei	Telephone	2165
Telephone		Facsimile	705-652-6365
Facsimile		Email	jill.campbell@sgs.com
Email	arajaei@thurber.ca; jzoldy@thurber.ca	SGS Reference	CA40119-JUN23
Project	36708, Hwy 35 Patrol Yard	Received	06/14/2023
Order Number		Approved	06/22/2023
Samples	Soil (2)	Report Number	CA40119-JUN23 R1
		Date Reported	06/22/2023

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

Corrosivity Index is based on the American Water Works Corrosivity Scale according to AWWA C-105. An index greater than 10 indicates the soil matrix may be corrosive to cast iron alloys.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	
Index	
Results	
QC Summary	5-6
	7
	,

FINAL REPORT

Client: Thurber Engineering Ltd.

Project: 36708, Hwy 35 Patrol Yard

Project Manager: Ali Rajaei

Samplers: Ali Rajaei

		Sample Number	5	6
		Sample Name	VMB-02/SS3	MSB-02/SS2
		Sample Matrix	Soil	Soil
		Sample Date	31/05/2023	31/05/2023
Units	RL	· · ·	Result	Result
none	1		4	1
mV	no		214	207
%	0.04		< 0.04	< 0.04
pH Units	0.05		8.82	7.87
ohms.cm	-9999		20800	83300
		· · · · ·		
uS/cm	2		48	12
		· · · · · ·		
%	0.1		5.8	8.8
hð\ð	0.4		< 0.4	< 0.4
hā\ā	0.4		1.1	0.6
	Units none mV % pH Units ohms.cm uS/cm uS/cm yg/g	Units RL none 1 mV no mV 0.04 pH Units 0.05 ohms.cm -9999 uS/cm 2 % 0.1 µg/g 0.4	Sample Number Sample Name Sample Matrix Sample Date Units RL None 1 MV no MV 0.04 PH Units 0.05 Ohms.cm -9999 US/cm 2 M 0.1 μg/g 0.4	Sample Number 5 Sample Name VMB-02/SS3 Sample Matrix Soil Sample Date 31/05/2023 Units RL Result None 1 4 MV no 214 MV 0.04 <0.04

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO0434-JUN23	hð\ð	0.4	<0.4	1	35	98	80	120	97	75	125
Sulphate	DIO0434-JUN23	µg/g	0.4	<0.4	1	35	98	80	120	96	75	125

Carbon/Sulphur

Method: ASTM E1915-07A | Internal ref.: ME-CA-IENVIARD-LAK-AN-020

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Me	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	Image: LCS/Spike Blank Matrix Spike / Ref. Spike Recovery (%) Recovery Limits (%) Spike Recovery (%) (%) Low High 92 80 120	High				
Sulphide (Na2CO3)	ECS0039-JUN23	%	0.04	< 0.04	ND	20	92	80	120			

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	6/Spike Blank		Matrix Spike / Ref.		.)
	Reference			Blank	PDD	40	Spike	Recove	ory Limits	Spike	Recovery Limits	
						(%)	Recovery	(%)	Recovery	(%	á)
						(,	(%)	Low	High	(%)	Low	High
Conductivity	EWL0364-JUN23	uS/cm	2	< 2	0	20	100	90	110	NA		

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma		
	Reference			Blank	RPD	AC	Snike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%)	
						(70)	(%)	Low	High	(%)	Low	High
pH	EWL0364-JUN23	pH Units	0.05	NA	0		100			NA		

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Con	sortium Court.	London, ON, N	6E 2S8 Phon	e: 519-6	72-450	QO Toll	Free:	877-84	8-8060	Fax	519-67	2-036	1						Page 1 of 1				
L'ackingon			Labora	Ry Inton	Pation	Sec	tion	Lab	use	only		~												
Received Date (mm/dd/yy):	23	Received By Custody Sea	(signature): _/	VA	tester	4m	Coolin	g Age	nt Pres	sent:		10	Vn.	5					~	Lucio a na				
Received Time: 14:15	•	Custody Sea	Intact:			1	Temp	erature	e Upon	Recei	pt (°C)		K	2		00	LAB	LIMS #	t:C#	440119-JUN 23				
REPORT INFORMATION	11	VOICE INFO	RMATION										PRO	JECT	INFO	RMA	TION							
Company: Thurber Engineering Ltd.	(same as F	Report Informa	ation)		Quota	2uotation #P.O. #: 36708																		
Contact Ali Rajaei	Company:	Project #: 36708 Site Location/ID: Hwy 35 Patrol Yard																						
Address: 1815 Ironstone Manor Suite 11,	Contact:				TURNAROUND TIME (TAT) REQUIRED																			
Pickering, ON LTW 3009	Address:	Regular TAT (5-7days) TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day																						
Phone: 4165759069		RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days																						
Email: arajaei@thurber.ca	Phone:	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION																						
Email Rgeddam@thurber.ca	Email				Speci	fy Due Date: Rush Confirmation ID:																		
REG	ULATIONS						NOT	E: D	RINKI	ING (F	TED	BLE) V	SGS	R SAI	KING	S FO	RCH	MAN (CONS OF CL	JUMPTION MUST BE				
Regulation 153/04:	Other Regulatio	ons:	Sewe	er By-Law:						ANA	ALYS	IS RE	QUES	TED										
Table 1 R/P/I Soil Texture: Table 2 VC/C Coarse Table 3 A/O Medium Table _ Fine	Reg 347/55 PWQO CCME MISA	Reg 347/558 (3 Day min TAT) Sanitary PWQ0 MMER Storm CCME Other: Municipality: MISA \$\$					Aroctor		X D THM D			en. 🗆 Ext. 🗆		Resistivity					COMMENTS:					
RECORD OF SITE CONDITION (RSC			1	1	ed (pior	N N		ΡĤ	BTE	8	Da	Ö	120	ity/									
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filter	Metals & Ir		PCB Total	PHC F1-F	VOC 🗆	Pesticides	B(a)P	Water Pkg	Sewer Use:	Corrosiv									
1 VMG-02/SS3	5/31/23	17:30	1	Soil	1.1.1										\square					Please include Sulphide as we				
2 MSB-02/SS2	5/31/23	17:20	1	Soil											\square					Please include Sulphide as we				
3		1			-																			
4		1.1		1																				
5					1.1																			
6					1																			
7			1		1.5																			
8					5																			
9				-	1.1																			
10		11213	· · · · · · 1																					
11		1																						
12		10.00	1		1.0																			
Observations/Comments/Special Instructions																								
ALCO 1		Cinestan	10					-	Date: 06/13/23 (mm/dd/yy)								Pink Conv., Client							
Sampled By (NAME): All Rajael		Signature:	MA			Date: 06/13/23 (mm/dd/yy)					Pink Copy - Client													

Date of Issue 04 April 2018

Photograph #1 – General view of the site. The site is a vacant land with concrete fencing posts and barbed wire around the site. Track-mounted drill rig in the background.

Photograph #2 – Another view of the site and barbed fence. Looking southeast.

Photograph #3 – Looking east. Monitoring well is installed in the area of the proposed stormwater management pond (Borehole SWMP-02).

Photograph #4 – Looking east. Monitoring well is installed in the area of the proposed underground water storage tanks (Borehole FST-01).

Site Photographs

Photograph #5 – Test pit excavation to perform in-situ infiltration (Guelph permeameter) test at the proposed stormwater management pond location (Test Pit TP-01).

Photograph #6 – Looking southeast. Backfilled test pit (Test Pit TP-01).

APPENDIX C

• Hydrogeological Test Results

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	0.5 m Deep Test Pit, 1st test, H1=5 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.70	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	0.5 m Deep Test Pit, 1st test, H2=10 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.70	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	0.5 m Deep Test Pit, 2nd test, H1=10 cm.	Soil Sample ID:	-
Test Pit Easting (m):		Test Pit Northing (m):	-
Test Depth (mbgs):	0.70	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	кі/ үс	Checked by:	DH
Test ID:	0.5 m Deep Test Pit, 2nd test, H2=20 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.70	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	2 m Deep Test Pit, 1st test, H1=5 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	2.40	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	2 m Deep Test Pit, 1st test, H2=10 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	2.40	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	2 m Deep Test Pit, 2nd test, H1=5 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	2.40	Test Elevation (masl):	-
Soil Description:	-		

Project:	Highway 35 MTO Patrol Yard	Test Date:	2020-06-07
Number:	36708	Client:	Dillon Consulting Ltd.
Performed by:	KI/ YC	Checked by:	DH
Test ID:	2 m Deep Test Pit, 2nd test, H2=10 cm.	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	2.40	Test Elevation (masl):	-
Soil Description:	-		

